2,095 research outputs found

    Polyphosphates and Complement Activation

    Get PDF
    To sustain life in environments that are fraught with risks of life-threatening injury, organisms have developed innate protective strategies such that the response to wounds is rapid and localized, with the simultaneous recruitment of molecular, biochemical, and cellular pathways that limit bleeding and eliminate pathogens and damaged host cells, while promoting effective healing. These pathways are both coordinated and tightly regulated, as their over- or under-activation may lead to inadequate healing, disease, and/or demise of the host. Recent advances in our understanding of coagulation and complement, a key component of innate immunity, have revealed an intriguing linkage of the two systems. Cell-secreted polyphosphate promotes coagulation, while dampening complement activation, discoveries that are providing insights into disease mechanisms and suggesting novel therapeutic strategies

    Pleiotropic and Novel Phenotypes in The \u3cem\u3eDrosophila\u3c/em\u3e Gut Caused by Mutation of \u3cem\u3eDrop-Dead\u3c/em\u3e

    Get PDF
    Normal gut function is vital for animal survival, and deviations from such function can contribute to malnutrition, inflammation, increased susceptibility to pathogens, diabetes, neurodegenerative diseases, and cancer. In the fruit fly Drosophila melanogaster, mutation of the gene drop-dead (drd) results in defective gut function, as measured by enlargement of the crop and reduced food movement through the gut, and drd mutation also causes the unrelated phenotypes of neurodegeneration, early adult lethality and female sterility. In the current work, adult drd mutant flies are also shown to lack the peritrophic matrix (PM), an extracellular barrier that lines the lumen of the midgut and is found in many insects including flies, mosquitos and termites. The use of a drd-gal4 construct to drive a GFP reporter in late pupae and adults revealed drd expression in the anterior cardia, which is the site of PM synthesis in Drosophila. Moreover, the ability of drd knockdown or rescue with several gal4 drivers to recapitulate or rescue the gut phenotypes (lack of a PM, reduced defecation, and reduced adult survival 10–40 days post-eclosion) was correlated to the level of expression of each driver in the anterior cardia. Surprisingly, however, knocking down drd expression only in adult flies, which has previously been shown not to affect survival, eliminated the PM without reducing defecation rate. These results demonstrate that drd mutant flies have a novel phenotype, the absence of a PM, which is functionally separable from the previously described gut dysfunction observed in these flies. As the first mutant Drosophila strain reported to lack a PM, drd mutants will be a useful tool for studying the synthesis of this structure

    A preliminary checklist of the marine algae of Campobello Island, New Brunswick, Canada

    Get PDF
    Volume: 72Start Page: 313End Page: 33

    Survivin Selectively Modulates Genes Deregulated in Human Leukemia Stem Cells

    Get PDF
    ITD-Flt3 mutations are detected in leukemia stem cells (LSCs) in acute myeloid leukemia (AML) patients. While antagonizing Survivin normalizes ITD-Flt3-induced acute leukemia, it also impairs hematopoietic stem cell (HSC) function, indicating that identification of differences in signaling pathways downstream of Survivin between LSC and HSC are crucial to develop selective Survivin-based therapeutic strategies for AML. Using a Survivin-deletion model, we identified 1,096 genes regulated by Survivin in ITD-Flt3-transformed c-kit+, Sca-1+, and lineageneg (KSL) cells, of which 137 are deregulated in human LSC. Of the 137, 124 genes were regulated by Survivin exclusively in ITD-Flt3+ KSL cells but not in normal CD34neg KSL cells. Survivin-regulated genes in LSC connect through a network associated with the epidermal growth factor receptor signaling pathway and falls into various functional categories independent of effects on apoptosis. Pathways downstream of Survivin in LSC that are distinct from HSC can be potentially targeted for selective anti-LSC therapy

    Role of the 2 zebrafish survivin genes in vasculo-angiogenesis, neurogenesis, cardiogenesis and hematopoiesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Normal growth and development of organisms requires maintenance of a dynamic balance between systems that promote cell survival and those that induce apoptosis. The molecular mechanisms that regulate these processes remain poorly understood, and thus further <it>in vivo </it>study is required. Survivin is a member of the inhibitor of apoptosis protein (IAP) family, that uniquely also promotes mitosis and cell proliferation. Postnatally, survivin is hardly detected in most tissues, but is upregulated in all cancers, and as such, is a potential therapeutic target. Prenatally, survivin is also highly expressed in several tissues. Fully delineating the properties of survivin <it>in vivo </it>in mice has been confounded by early lethal phenotypes following <it>survivin </it>gene inactivation.</p> <p>Results</p> <p>To gain further insights into the properties of survivin, we used the zebrafish model. There are 2 zebrafish <it>survivin </it>genes (<it>Birc5a </it>and <it>Birc5b</it>) with overlapping expression patterns during early development, prominently in neural and vascular structures. Morpholino-induced depletion of <it>Birc5a </it>causes profound neuro-developmental, hematopoietic, cardiogenic, vasculogenic and angiogenic defects. Similar abnormalities, all less severe except for hematopoiesis, were evident with suppression of <it>Birc5b</it>. The phenotypes induced by morpholino knockdown of one <it>survivin </it>gene, were rescued by overexpression of the other, indicating that the <it>Birc5 </it>paralogs may compensate for each. The potent vascular endothelial growth factor (VEGF) also entirely rescues the phenotypes induced by depletion of either <it>Birc5a </it>and <it>Birc5b</it>, highlighting its multi-functional properties, as well as the power of the model in characterizing the activities of growth factors.</p> <p>Conclusion</p> <p>Overall, with the zebrafish model, we identify survivin as a key regulator of neurogenesis, vasculo-angiogenesis, hematopoiesis and cardiogenesis. These properties of survivin, which are consistent with those identified in mice, indicate that its functions are highly conserved across species, and point to the value of the zebrafish model in understanding the role of this IAP in the pathogenesis of human disease, and for exploring its potential as a therapeutic target.</p

    A Double-Blind Trial of Protriptyline in the Treatment of Sleep Apnea Syndrome

    Get PDF
    Eight male subjects with sleep apnea syndrome were given placebo and protriptyline in a double-blind crossover design to evaluate the effects of protriptyline on respiration during sleep. Treatment with protriptyline produced significantly better oxygenation and significantly fewer arousals during sleep, but sleep staging was unchanged. The decreased number of respiratory events approached significance and was much greater in six of eight subjects. A rapid eye movement sleep-suppression explanation of the improvement in oxygenation is not supported. Alternative explanations of these findings are discussed

    Inflammation-associated Cell Cycle–independent Block of Apoptosis by Survivin in Terminally Differentiated Neutrophils

    Get PDF
    Survivin has received great attention due to its expression in many human tumors and its potential as a therapeutic target in cancer. Survivin expression has been described to be cell cycle–dependent and restricted to the G2-M checkpoint, where it inhibits apoptosis in proliferating cells. In agreement with this current view, we found that survivin expression was high in immature neutrophils, which proliferate during differentiation. In contrast with immature cells, mature neutrophils contained only little or no survivin protein. Strikingly, these cells reexpressed survivin upon granulocyte/macrophage colony-stimulating factor (CSF) or granulocyte CSF stimulation in vitro and under inflammatory conditions in vivo. Moreover, survivin-deficient mature neutrophils were unable to increase their lifespan after survival factor exposure. Together, our findings demonstrate the following: (a) overexpression of survivin occurs in primary, even terminally differentiated cells and is not restricted to proliferating cells; and (b) survivin acts as an inhibitor of apoptosis protein in a cell cycle–independent manner. Therefore, survivin plays distinct and independent roles in the maintenance of the G2-M checkpoint and in apoptosis control, and its overexpression is not restricted to proliferating cells. These data provide new insights into the regulation and function of survivin and have important implications for the pathogenesis, diagnosis, and treatment of inflammatory diseases and cancer

    Small molecule inhibition of CBP/catenin interactions eliminates drug resistant clones in acute lymphoblastic leukemia

    Get PDF
    Drug resistance in acute lymphoblastic leukemia (ALL) remains a major problem warranting new treatment strategies. Wnt/catenin signaling is critical for the self-renewal of normal hematopoietic progenitor cells. Deregulated Wnt signaling is evident in chronic and acute myeloid leukemia, however little is known about ALL. Differential interaction of catenin with either the Kat3 coactivator CREBBP (CBP) or the highly homologous EP300 (p300) is critical to determine divergent cellular responses and provides a rationale for the regulation of both proliferation and differentiation by the Wnt signaling pathway. Usage of the coactivator CBP by catenin leads to transcriptional activation of cassettes of genes that are involved in maintenance of progenitor cell self-renewal. However, the use of the coactivator p300, leads to activation of genes involved in the initiation of differentiation. ICG-001 is a novel small molecule modulator of Wnt/catenin signaling, which specifically binds to the N-terminus of CBP and not p300, within amino acids 1–110, thereby disrupting the interaction between CBP and catenin. Here, we report that selective disruption of the CBP/β- and γ-catenin interactions using ICG-001 leads to differentiation of pre-B ALL cells and loss of self-renewal capacity. Survivin, an inhibitor-of-apoptosis protein, was also downregulated in primary ALL after treatment with ICG-001. Using ChIP assay, we demonstrate occupancy by CBP of the survivin promoter, which is decreased by ICG-001 in primary ALL. CBP-mutations have been recently identified in a significant percentage of ALL patients, however, almost all of the identified mutations reported occur C-terminal to the binding site for ICG-001. Importantly, ICG-001, regardless of CBP mutational status and chromosomal aberration, leads to eradication of drug-resistant primary leukemia in combination with conventional therapy in vitro and significantly prolongs the survival of NOD/SCID mice engrafted with primary ALL. Therefore, specifically inhibiting CBP/catenin transcription represents a novel approach to overcome relapse in ALL

    The Lectin-like Domain of Thrombomodulin Confers Protection from Neutrophil-mediated Tissue Damage by Suppressing Adhesion Molecule Expression via Nuclear Factor κB and Mitogen-activated Protein Kinase Pathways

    Get PDF
    Thrombomodulin (TM) is a vascular endothelial cell (EC) receptor that is a cofactor for thrombin-mediated activation of the anticoagulant protein C. The extracellular NH2-terminal domain of TM has homology to C-type lectins that are involved in immune regulation. Using transgenic mice that lack this structure (TMLeD/LeD), we show that the lectin-like domain of TM interferes with polymorphonuclear leukocyte (PMN) adhesion to ECs by intercellular adhesion molecule 1–dependent and –independent pathways through the suppression of extracellular signal–regulated kinase (ERK)1/2 activation. TMLeD/LeD mice have reduced survival after endotoxin exposure, accumulate more PMNs in their lungs, and develop larger infarcts after myocardial ischemia/reperfusion. The recombinant lectin-like domain of TM suppresses PMN adhesion to ECs, diminishes cytokine-induced increase in nuclear factor κB and activation of ERK1/2, and rescues ECs from serum starvation, findings that may explain why plasma levels of soluble TM are inversely correlated with cardiovascular disease. These data suggest that TM has antiinflammatory properties in addition to its role in coagulation and fibrinolysis
    corecore